

GUÍA DOCENTE DE DISEÑO GRÁFICO 2023-24

DATOS GENERALES

Nombre:	DISEÑO GRÁFICO	
Código:	801723	
Curso:	2023-24	
Titulación:	Grado en Ciencias y Tecnologías Aplicadas al	
	Deporte y al Acondicionamiento Físico	
N.º de créditos (ECTS):	6	
Ubicación en el plan de estudios:	Primer curso, primer cuatrimestre	
Departamento:	Sistemas de información y tecnología	
Responsable departamento:	Dra. Cristina Cáliz	
Fecha de la última revisión:	Julio 2023	
Profesor Responsable:	Dra. Mireia Puig Poch	

1. DESCRIPCIÓN GENERAL

La asignatura de Diseño Gráfico se divide en dos grandes bloques a través de herramientas de representación guiada por ordenador tanto de espacio como de objetos.

Por un lado, se trabajan conceptos básicos de geometría plana que se aplicarán en el desarrollo y representación de objetos relacionados con el deporte y el fitness. Se trabajará con cuerpos tridimensionales para acercarnos al diseño formal del producto, para que el estudiante pueda concebir y proponer objetos simples, a la vez que comprender y elaborar la planimetría 2D de los mismos.

Por otro lado, se trabajará con plantas arquitectónicas para habilitar al estudiante a la comprensión del lenguaje propio de la disciplina. Se aplicarán los conceptos en la elaboración de planimetría relacionada con el espacio de fitness u otras áreas de deporte.

2. OBJETIVOS

- Dominar los conceptos básicos de la geometría plana necesarios para la elaboración de objetos tridimensionales y planimetría
- Ser capaz de reconocer y aplicar las convenciones gráficas de la representación de objetos y de la representación de espacios.
- Plantear objetos sencillos y elaborar su representación tridimensional y planimetría
- Plantear espacios sencillos destinados a la práctica del deporte y el fitness
- Utilizar herramientas CAD (Solidworks y AutoCad) para la realización de modelado 3D, representación normalizada, desarrollo de conjuntos, presentación de plantas y secciones arquitectónicas, así como distribución de objetos y recorridos.

3. CONTENIDOS

BLOQUE 1: DISEÑO GRÁFICO ASOCIADO AL PRODUCTO

TEMA 1: GEOMETRÍA PLANA

Resultados de aprendizaje a adquirir

El estudiante después de estudiar el capítulo y realizar los ejercicios, será capaz de:

- Entender los planteamientos geométricos a partir de enunciados textuales y gráficos
- Realizar trazados con ordenador centrados en geometría plana
- Hallar soluciones gráficas a problemas geométricos

Contenido

- 1.1 Elementos básicos de la geometría plana
- 1.2 Perpendicularidad y paralelismo
- 1.3 Escalas
- 1.4 Distancias entre punto, recta y circunferencia
- 1.5 Tangencias

TEMA 2: SISTEMAS DE REPRESENTACIÓN Y NORMALIZACIÓN INDUSTRIAL

Resultados de aprendizaje a adquirir

El estudiante después de estudiar el capítulo y realizar los ejercicios, será capaz de:

- Comprender el concepto de normalización.
- Representar objetos bajo una normativa concreta.
- Entender representaciones normalizadas
- Identificar elementos normalizados

Contenido

- 2.1 Introducción a la normalización industrial
- 2.2 Vistas normalizadas
- 2.3 Cortes y secciones
- 2.4 Acotación

TEMA 3: MODELADO EN 3D Y REPRESENTACIÓN EN 2D

Resultados de aprendizaje a adquirir

El estudiante después de estudiar el capítulo y realizar los ejercicios, será capaz de:

- Realizar modelado básico a través de herramientas Solidworks.
- Conocer los fundamentos del modelado 3D basado en funciones.
- Interpretar las proyecciones isométrica y diédrica.

Contenido

- 3.1 Proyecciones y sistemas de representación
- 3.2 Dibujo técnico a mano alzada
- 3.3 Del croquis 2D al modelo 3D
- 3.4 Del modelo 3D a la representación en 2D
- 3.5 Herramientas de modelado y representación bidimensional en Solidworks

TEMA 4: DISEÑO DE CONJUNTOS 3D

Resultados de aprendizaje a adquirir

El estudiante después de estudiar el capítulo y realizar los ejercicios, será capaz de:

- Entender la representación normalizada de conjuntos.
- Plantear, modelar i representar conjuntos sencillos

Contenido

- 4.1 La representación normalizada de conjuntos
- 4.2 El ensamblaje en Solidworks

BLOQUE 2: DISEÑO GRÁFICO ASOCIADO A LA ARQUITECTURA

TEMA 5: TEMAS REPRESENTACIÓN ARQUITECTÓNICA

Resultados de aprendizaje a adquirir

El estudiante después de estudiar el capítulo y realizar los ejercicios, será capaz de:

- Interpretar un plano arquitectónico
- Saber expresar propuestas a nivel de espacio

- Representación de espacios en planta, alzado y secciones
- Conocer la simbología arquitectónica

Contenido

- 5.1 Medición del espacio arquitectónica y traslado al dibujo
- 5.2 Convenciones gráficas de la arquitectura
- 5.3 Acotación y representación de escalas

TEMA 6: INTRODUCCIÓN Y APLICACIÓN DEL DIBUJO EN AUTOCAD

Resultados de aprendizaje a adquirir

El estudiante después de estudiar el capítulo y realizar los ejercicios, será capaz de:

- Conocer las herramientas de dibujos del programa
- Realizar presentaciones en formato papel
- Dominar la filosofía de dibujo en el uso del programa

Contenido

- 6.1 Espacio modelo y espacio papel
- 6.2 Herramientas de dibujo y representación
- 6.3 Bloques
- 6.4 Dibujo isométrico en AutoCad

4. METODOLOGÍA DE ENSEÑANZA Y APRENDIZAJE

Se basa en clases realizadas delante del ordenador, utilizando software de sistemas de CAD. En estas clases, el docente realiza la introducción a los principios teóricos de cada sesión, acompañándolo de ejercicios introductorios. Una vez realizada esta introducción teórica, se plantea el ejercicio a desarrollar durante toda la sesión durante la cual los estudiantes deben completar el ejercicio de forma autónoma con asistencia del docente.

Hay actividades que deben completarse durante la sesión y otras que pueden completarse en los días siguientes, fuera del aula. Cada fecha de entrega se estipula de forma pertinente en los enunciados.

Parte de la sesión siguiente, se destina a la revisión para identificar los errores más comunes y dar pautas para su corrección, de modo que el estudiante pueda incluir las

mejoras en los siguientes ejercicios, ya que el contenido es acumulativo a lo largo de las semanas.

Material imprescindible para cursar la asignatura:

- Disponer de los softwares necesarios en el ordenador personal. La universidad facilita las licencias pertinentes y el alumno debe instalarlo de forma autónoma.
- Disponer de herramientas de dibujo (lápiz, goma, papel blanco, regla graduada, escuadra y cartabón, compás)

5. EVALUACIÓN

De acuerdo con el Plan Bolonia, el modelo premia el esfuerzo constante y continuado del estudiantado. Un 40% de la nota se obtiene de la evaluación continua de las actividades dirigidas y el 60% porcentaje restante, del examen final presencial. El examen final tiene dos convocatorias.

La nota final de la asignatura (NF) se calculará a partir de la siguiente fórmula:

- NF = Nota Examen Final x 60% + Nota Evaluación Continuada x 40%
- Nota mínima del examen final para calcular la NF será de 40 puntos sobre 100.
- La asignatura queda aprobada con una NF igual o superior a 50 puntos sobre 100.

Actividades de evaluación continua:

Tipo de actividad	Descripción	Totales	%
Entregas:			
Ejercicio 01	Dibujo a mano de figuras simples	2	
Ejercicio 02	Introducción al modelado en 3D en	2	
	Solidworks		
Ejercicio 03	Modelado de piezas y planimetría	3	
Ejercicio 04	Modelado y planimetría de objetos para la	8	
	práctica del fitness		
Ejercicio 05	Elaboración de conjuntos	10	
Test Solidworks		25	
Ejercicio 06	Dibujo a mano de un espacio real	2	
Ejercicio 07	Introducción al AutoCad	5	
Ejercicio 08	Dibujo y presentación en AutoCad	5	
Ejercicio 09	Dibujo y creación de bloques	10	
Ejercicio 10	Isometría en AutoCad 2D	3	

Test AutoCad		25%	
Total evaluación continua		100%	40%
Examen final		100%	60 %
	NOTA FINAL		100%

6. BIBLIOGRAFÍA

6.1 BIBLIOGRAFÍA BÁSICA

Ramos Barbero, Basilio. *Dibujo Técnico* (3ª Edición). Aenor Ediciones, 2016. ISBN 9788481439182

Gonzalo Gonzalo, J. *Dibujo geométrico: arquitectura, ingeniería*. San Sebastián: Donostiarra, 2001. ISBN 8470632876

Félez, Jesús. Dibujo industrial. Madrid: Síntesis, 1995. ISBN 8477383316.

6.2 BIBLIOGRAFÍA COMPLEMENTARIA

Gómez González, Sergio. SolidWorks Práctico I: Pieza, ensamblaje y dibujo, 2012. Marcombo

Gómez González, Sergio. SolidWorks Práctico II: Complementos, 2012. Marcombo Cebolla, Castell y Santoro, Jaime. Autocad 2019. Curso Práctico. 2019 Ra-Ma