

GRADO EN CIENCIAS Y TECNOLOGÍAS APLICADAS AL DEPORTE I AL ACONDICIONAMIENTO FÍSICO

GUÍA DOCENTE FÍSICA I 2020-21

DATOS GENERALES

ASIGNATURA:	FÍSICA I
CÓDIGO:	801714
CURSO:	1R CURSO
CRÉDITOS (ECTS):	6
PROFESOR COORDINADOR:	Dr. Vicent Sala
FECHA ÚLTIMA REVISIÓN:	14/09/2020

DESCRIPCIÓN GENERAL

Los conceptos de la Física son imprescindibles para entender el movimiento y éste a su vez, imprescindible para todo lo que significa el deporte y la actividad física. En esta asignatura se estudiarán los mecanismos que actúan para que se produzca el movimiento de un cuerpo y las consecuencias que tienen sobre el movimiento cualquier variación en las condiciones que intervienen. Conceptos como la cinemática, la dinámica o la energía, se estudiarán en profundidad incidiendo en sus aplicaciones.

Por otro lado, contextualizado con este grado, se estudiarán todos los conceptos físicos a través de sus aplicaciones en las distintas variedades de deportes o ejercicios en las que tienen un papel relevante. De esta forma se pretende poner en valor la Física para la comprensión del deporte en general.

OBJETIVOS

Al final de este curso los alumnos alcanzarán un alto grado de comprensión en la aplicación de las fuerzas y en el cálculo de las trayectorias de los cuerpos. Se aprenderá a resolver problemas físicos que se plantean en el deporte y también, se realizará un primer acercamiento a las herramientas de programación y de computación necesarias para resolver y visualizar problemas más complejos.

Se potenciará la resolución de trabajos prácticos en los que se registren e interpreten los datos relacionados con el deporte. De esta manera los alumnos podrán incorporar la Física a sus futuros proyectos en el mundo del trabajo.

CONTENIDOS

TEMA 1: FUNDAMENTOS CIENTÍFICOS Y MATEMÁTICOS

Resultados del aprendizaje

El estudiante después de estudiar el capítulo y realizar los ejercicios, será capaz de:

- Dominar las coordenadas cartesianas
- Entender el concepto de vector cómo movimiento
- Caracterizar rectas, parábolas y otras trayectorias.
- Calcular, Transformar y Expresar diferentes unidades y magnitudes

Contenido

- 1.1 Coordenadas cartesianas 2D y 3D de un punto
- 1.2 Vector como entre dos puntos. Dirección y magnitud de un vector.
- 1.3 Proyección sobre una dirección. Productos escalar y vectorial.
- 1.3 Rectas y parábolas.
- 1.4 Unidades y Dimensiones. Notación Científica
- 1.5 Conceptos de Área Integral / Tangente Valor de la Derivada

TEMA 2: CINEMÁTICA

Resultados del aprendizaje

El estudiante después de estudiar el capítulo y realizar los ejercicios, será capaz de:

- Dominar los conceptos de posición, velocidad y aceleración
- Identificar tipos de movimientos y trayectorias asociados.
- Calcular puntos máximos y mínimos en una trayectoria.

Contenido

- 2.1 Posición, velocidad y aceleración. Definición y sus relaciones.
- 2.2 Movimiento rectilíneo uniforme y uniformemente acelerado.
- 2.3 Puntos máximos y mínimos de posición y velocidad.
- 2.4 Tecnología aplicada al Estudio y Análisis de la Cinemática en el Deporte
- 2.5 Análisis y Estudio de trayectorias de lanzamiento en distintos deportes sobre datos e imágenes de video
- 2.6 Cálculo de Puntos de interés en movimientos y trayectorias mediante Python

TEMA 3: DINÁMICA

Resultados del aprendizaje

El estudiante después de estudiar el capítulo y realizar los ejercicios, será capaz de:

- Dominar el concepto de fuerza y su relación con el movimiento.
- Entender la consecuencia de aplicar una fuerza en un punto u objeto.
- Representar la acción de una fuerza aplicada sobre una trayectoria.

Contenido

- 3.1 Principios de la Dinámica: Leyes de Newton
- 3.2 Concepto de Fuerza. Tipos de fuerza.
- 3.3 Carácter vectorial de una fuerza. Resultante de fuerzas.
- 3.4 Elasticidad y Fuerzas no Conservativas: rozamiento.
- 3.6 Momento lineal. Palanca. Impulso y cantidad de movimiento. Principio de conservación.
- 3.7 Tecnología aplicada al Estudio y Análisis de la Dinámica en el Deporte
- 3.8 Cálculo de diagramas de distribución de fuerzas y resultantes mediante Python

TEMA 4: ENERGÍA, POTENCIA Y TRABAJO

Resultados del aprendizaje

El estudiante después de estudiar el capítulo y realizar los ejercicios, será capaz de:

- Entender el concepto de energía y su conservación.
- Saber escoger la dirección de una fuerza para obtener máximo trabajo (o rendimiento deportivo).
- Calcular trabajos y potencias en un movimiento.

Contenido

- 4.1 Concepto de Energía. Tipos de Energía.
- 4.2 Energía Cinética y Potencial. Conservación.
- 4.3 Choques Elásticos y Plásticos
- 4.4 Trabajo Mecánico. Definición y cálculo.
- 4.5 Potencia. Relación entre trabajo y tiempo.
- 4.6 Tecnología aplicada el Estudio y Análisis de la Potencia y el Trabajo en el Deporte
- 4.7 Ejemplos de trabajo y potencia en deportes.

TEMA 5: SOLIDO RÍGIDO

Resultados del aprendizaje

El estudiante después de estudiar el capítulo y realizar los ejercicios, será capaz de:

- Dominar los conceptos posición y orientación de un cuerpo.
- Entender la diferencia entre velocidad lineal y angular.
- Calcular la torsión provocada por una fuerza.
- Identificar estos conceptos en los deportes de gimnasia, patinaje y saltos.

Contenido

- 5.1 Solido Rígido. Centro de masas y orientación.
- 5.2 Velocidad lineal y velocidad angular. Momentos.
- 5.3 Fuerzas y torsiones.
- 5.4 Principios de la Biomecánica
- 5.5 Modificación de estos conceptos durante un ejercicio deportivo.

TEMA 6: FENÓMENOS ONDULATORIOS, CAMPOS Y FUERZAS ELECTROMAGNÉTICAS

Resultados del aprendizaje

El estudiante después de estudiar el capítulo y realizar los ejercicios, será capaz de:

- Dominar los conceptos de frecuencia, periodo y fase.
- Relacionar ambos movimientos a partir de su representación temporal.
- Dominar el concepto de campo magnético.
- Entender la relación entre un campo magnético, fuerza y electricidad.

Contenido

- 6.1 Movimiento oscilatorio. Péndulo simple. Frecuencia y Periodo.
- 6.2 Movimiento ondulatorio. Ecuación de ondas. Tipos y características de ondas.
- 6.3 Concepto de campo magnético.
- 6.4 Relación entre campo magnético, fuerza y corriente eléctrica.
- 6.5 Aplicaciones en tecnologías y sensores utilizados en los deportes.

METODOLOGÍA DE ENSEÑANZA Y APRENDIZAJE

Se basa en clases expositivas participativas complementadas con lectura por adelantado de los temas, ejercicios de clase o en la pista y los trabajos en casa. Con las prácticas y los trabajos en casa se espera reafirmar los conceptos y procedimientos de cálculo.

EVALUACIÓN

De acuerdo con el Plan Bolonia, el modelo premia el esfuerzo constante y continuado del estudiantado. Un 40% de la nota se obtiene de la evaluación continua de las actividades dirigidas y el 60% porcentaje restante, del examen final presencial. El examen final tiene dos convocatorias.

La nota final de la asignatura (NF) se calculará a partir de la siguiente fórmula:

- NF = Nota Examen Final x 60% + Nota Evaluación Continuada x 40%
- Nota mínima del examen final para calcular la NF será de 40 puntos sobre 100.
- La asignatura queda aprobada con una NF igual o superior a 50 puntos sobre 100.

BIBLIOGRAFÍA BÁSICA

- Física para la ciencia y la tecnología, Vol. 1: Mecánica, oscilaciones y ondas, termodinámica, 6ª Edición de Paul Allen Tipler y Gene Mosc
- Biomecánica básica. Aplicada a la actividad física y el deporte. (19 nov 2014) de Pérez Soriano,
 Pedro y Llana Belloch, Salvador
- Física para la ciencia y la tecnología, Vol. 2: Electricidad y Electromagnetismo / Luz, 6º Edición de Paul Allen Tipler y Gene Mosc
- V. Mc. Spathopoulos. An Introduction to the Physics of Sports (2013).
- Michael Lisa. The Physics of Sports. Mc Graw-Hill Education (2016).
- https://www.real-world-physics-problems.com/physics-of-sports.html
- http://gbhsweb.glenbrook225.org/gbs/science/phys/projects/yep/sports/spinet.html